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Abstract

This paper examines maximizing the speed of movement, along a prescribed path, of the system
formed by a set of robot arms and the object they hold. The actuator torques that maximize the
acceleration of the system are shown to be determined by the solution to a standard linear

programming problem. The combination of this result wi_ the known control strategy for time
optimal movement of a single robot arm yletos an atgonmm for time optimal movement of multiple
robot arms holding the same workpiece.

Introduction

The problem of controlling the movement of an actuated closed kinematic chain is a model for
coordinating movement of several arms holding the same object, Luh and Zheng 1985, Tam, et al.
1987, manipulating an object with the fingers of a mechanical hand, Salisbury and Craig 1982, Li et
al. 1988, and conlrolling the posture of a walking machine, (kin and Oh 1981. In each case an

important benefit of the closed chain is the distribution of the load at manipulated body, or
workpiece, over the actuators of several different robots.

The problem of specifying the joint torques to achieve a specific movement of the chain is
underdetermined, which means a variety of joint torque histories perform the same movement.
Recent research focusses on using this freedom to balance the load among the actuators by

minimizing the total power consumed by the system along the trajectory, Kreutz and Lokshin 1988,
Luh and Zheng 1988 and Zheng and Luh 1988.

In this paper the dynamic indeterminacy that appears in the control of two cooperating 3R robots is
resolved by seeking the joint torque history that achieves the least wansit time along a specified path.
This result generalizes the known solution for the open chain case, Bobrow et al. 1985, and joins
minimum time path planning research for closed chains with the existing effort for open chains,
Gilbert and Johnson 1985, Shiller and Dubowsky 1988, Bobrow 1988, and Rajan 1985.

Dynamics Equations for Cooperating 3R Robots
In this section the equations of motion for the closed chain form .ed by a,..pair.of COOl_a.tin,g
manipulators are derived, focussing, on the case of two pmnar robots, t-rewous worz m mls area
includes the studies of the cooperauon of walking machine legs Orin and Oh 1981, of dual arm
robots Luh and Zheng 1985, and Tam et al. 1987, Kreutz and Lokshin 1988, and of mechanical

hands, Nakamura et al. 1986 and Li et al. 1988.

In this derivation we follow Kreutz and Lokshin 1988 and assume that the end effectors of each

robot rigidly hold the workpiece. The combination of these end-effectors and the workpiece is
viewed as a single moving rigid body. The joints at each end eff_tor .l_'ovi'de the forces _d
moments that move this body. This viewpoint allows us to tormmate me oynamlcs o_eacn arm and

the workpiece independently.
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Let the two robots be denoted Robot 1 and Robot 2. The joints of Robot 1 are defined by the
position vectors Ol, al, and bl, similarly the joints of Robot 2 are 02, a2, and b2, the rotation

angles at each of these joints are denoted Oi, _, and Vi, i= 1,2, respectively. See Fig. 1. The

lengths the first two links of each robot are Kiffilai-oil and Liflbi-ail , i=1,2. The moving body is

the rigid link connecting the end joints bl and b2, its length is H. The distance between the base
joints ol and 02 is G. For convenience assume that each link is uniform so that its center of mass
lies halfway between the joints it contains.

Figure 1. A pair of 3R planar robots holding the same workpiece.

Dynamics of the workpiece. Let x=(x,y) T be the position of the center of mass of the

work-piece and a be its orientation. If fI=(X1,YI) T and f2=(X2,Y2) T are the forces of interaction at

the joints bl and I)2 and _IJl and _Ia2 be the motor torques, then the equations of motion of the
workpiccc are"

m_ = fl + f2 •

I&-a 1- fl+a2-f2+Wl+W2
(I)

where

a i -- o(H/2sin _ - H/2cos a)Ti = 1,2 ,

and a---1 for Robot 1. and a=-I for Robot 2. The vectors a i determine the moment of the joint forces

about the center of mass. The dot denotes differentiation with respect to time, and m is the mass of
the workpiece while I is its moment of inertia about the center of mass.

Eq. (I) can be written in matrix form by adding a to the coordinate vector x, so that

x = (x,y,a) and we obtain
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[M0]i= A1fl+A2f2 +%0 ' (2)

The torquevector 'c0 isobtainedfrom (I)as

T

x o = + 'e2) . (3)

and A1 and A2 are 3x2 arrays consisting of the 2x2 identity matrix for the first two rows and the

vector a i in the third row.

The dynamics of each robot. Since the workpiece and end effectors of the robots have been
combined into a single body, the equations of motion of each robot reduce to those of a double

pendulum with forces applied at the end point b i. Assemble the joint angles into the vector 0i=(0 i,

q)i)T, and let O i, • i be associated joint torques. The equations of the two robots can be written as

_,_i(0i)]_ i+hi(0i,0i):'c i-C i, i=L2 (4)

where

T

_i = (Oi-_Fi , _i - tFi) " (5)

[Mi] is the 2x2 mass matrix, h i is the vector of Coriolis and gravitational terms, and C i arises from

the interaction forces at the workpiece. The form of these terms is the same for both robots so we

drop the subscript notation:

[M i(0)] =

I i K + IL + InK(K/2 ) 2 + ml.(L/2)2 + taLK 2 + mLLKco s (P
I L + mL(L/2)2+ 2mLLKcos(p

IL+ ml'(L/2)2 + lmLLKc°s _1I L + ml-(L/2) 2

(6)

h =
• • 1 K mLg(L/2)cos(0 + tp)

(--_(20+ _)_mLLKsm cp-_(m + 2mL)gKcos0-

1.2
-0 mLLK sin q) - mLg(L/2)cos(0 + (P) (7)

where the superscripts K, L refer to the cooresponding link with these lentghs.

The vectors Ci i=1,2 are the generalized joint torques associated with the forces fi=(Xi,Yi) exerted

at b i, and are given by the equations

Ci = [Ji T] fi, i=1,2, (8)
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where

[Ji] =
-KisOi-Lis(0i+q)i) -Lis(0i+q)i)]

Kic0i+Lic(0 i + q)i)Lie(0 i +q)i) J
(9)

is the Jacobian of the ith two link chain. Note s and c denote the sine and cosine functions.

The dynamics equations of the workpiece and of the two robots are coupled by the interaction forces
at bi.

The constraint equations• The coordinates, x, y, and ct, of the workpiece and the joint angles,

0i, q)i, Vi, i=1,2, are related by the kinematics equations of the two robots:

x = --tK3+ Kicos 0 i+ Licos(0 i+ 9i ) + o(I-I/2)cos ix,

Y =Kisin 0i+ Lisin(0i + 9i ) + o'(H/2)sino.,i= 1,2
(10)

where o=1 for Robot 1 and o=-1 for Robot 2. Given values for x=(x, y, o0, (10) can be solved to

determine each of the coordinate vectors 0i=(0i, (Pi), i= 1,2.

We now determine the relation between the joint velocities 0 i - ( {_ i' _)i) and accelerations {} i'

and the velocity and acceleration, i, f, of the work'piece. This conveniently done by introducing the
2 dimensional vector

T
= (x + oG ---o'(H/2)coso.,Y---a(H/2)sin ct)

The derivative of (10) can now be written as

(11)

and

_=[Ji]Oi, i= 1,2

+ i =L2

(12)

(13)

whm [ Ji] is the Jacobian of each robot, Eq. (9), and[Ji] is its derivative with respect to time. For

a given position, velocity and acceleration, x, i, _ of the workpiece, we can compute x, x, x, and

solve equations (12) and (13) to determine 0. and (}..
I i

Time Optimal Control

.The .pro.blem of controlling _.e c_. perating robot pair so that the workpiece traverses a specified path
m manunum tame xs a generanzaUon of work presented in Bobrow et al. 1985. Also see Dubowsky
and SkUler 1988 and Shin and McKay 1984.
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First, we assemble the equations of motion of the workpiece and the two arms into a single set of

equations by introducing the seven dimensional vector q = (x, 01,0 2) T..note x has three

components and 0 i each have two components. The equations of motion of the system become

[M] _ + h(q,_ = [B]x- [C]f (14)

The 7x7 system mass matrix [M] has [M 0]' [M 1] and [M _ along its diagonal.

The vector h(q, 6,) is simply h = (0, 0, 0, hl, h2) T obtained from (7). The system torque vector

z=(Or _>1' _1' O1' _2' _F2) T is six dimensional and [B] is the 7x6 matrix that maps it

to the three torque vectors _ O' x 1' x 2:

[B] = 0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 1

1 0-1 0 0 0

0 1 -1 0 0 0

0 0 0 1 0 -1

0 0 0 0 1 -1 (15)

The four dimensional vector f=(fl,f2) T represents the interaction forces at the workpiece. The 7x4

matrix [C] is obtained from Eqs. (2) and (8) as

°T
J2 (16)

Note that A1 and A2 are 3x2 arrays, while Jl T and J2 T are 2x2 arrays.

The next step is to introduce a path parameter s which identifies the position of the workpiece as it
moves along the specified trajectory. The system equations of motion (14) are written in terms of

this parameter. The goal is to determine the maximum acceleration _ along the path that is
achievable without exceeding the torque limits of the joint motors.

The path parameter. Since it is assumed a path has been specified, the parameterized vector x(s)

= (x(s), y(s), a(s)) T is a known function of some parameter s. We seek the function s(t) that
minimizes the transit time without exceeding the maximum torque attainable at each joint. Since x(s)

is given, we can determine 9(s) from (11), and obtain its derivatives in the form
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= (d_/ds)_

i = (d2_/ds2)_2 + (d_/ds)_ .

Using Eqs. (12) and (13) we obtain

0 i = [J ._-l(d_/ds) _

Oi = [J ._-1{ (d 2g/ds 2) j2 + (d_[/ds)_ - [J J [J d-l(d_[/ds) _ }

Ln mtely,weobtain =(i, 2) intheform

q=sql(s, s)+q2(s, _) ,

where q 1(,% s) isthevectorofelements thatmultiplies[ and q 2(s,
elements.

The equationsof motion (14)can now be writteninterms of thepathparameter,s,as:

[IV[]ql _ + g(q, _ = [B]'c- [C] f,

(17)

(18)

(19)

_) is thevector ofremaining

where

g(q, _ = [M]q 2 + h(q, b).

For given values of s and _, Eq. (20) becomes a set of seven linear equations in the eleven
unknowns _, 'r, and f.

(20)

The linear programming problem. The optimal control problem now reduces to computing the

torques '[=(O1, @1' tISl' 02' _2' tIs2) that provide the maximum (or minimum)

acceleration _ for each position and velocity, (s, _), of the work'piece, subject to the constraint that
the equations of motion (20) are satisfied. Note that because the cooperating robots form a three

degree of freedom system (7 coordinates - 4 constraints), for a given acceleration _ the torques are
not in general unique.

The problem of maximizing theaccelerationcan bc posed asa standardproblem inLinear

Programming, Thie 1979. That is,avector y = (_, _, f)T issoughtthatmaximizes (or
minimizes) the scalar acceleration

= by, b= (I,0,0,0,0,0,0,0,0,0,0)

The vectory issubjecttothe linearconstraintsdue totheequationsof motion

(21)
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[A] y = c, (22)

where fi'om (20) we have

[A] =[[M]q r- [B],[C]] (23)

c=-g.

Bounds on the magnitudes of the components of y arc also part of the standard linear programming

problem, which is how torque limits on the motors arc introduced. Notice that we can also introduce
bounds on the magnitude of the forces acting on the workpiece. The arrays [A], and c arc known

constants for cvcxy position and velocity (s, _), so a standard Linear Programming algorithm can be

used to determine y that maximizes s, in (21) subject to the constraints in (22).

The solution of this problem provides the set ofjoim torques x as well as the interaction forces fl

and f2 that yield extreme values for the acceleration, s, of the workpiece, for each point (s, _) in

phase space.. The result is the ability to compute the acceleration bounds f(s, _) and g(s, _),

f(s,_) < _ < g(s,_), (24)

such that the dynamics equations (20) are satisfied.

The control strategy. With the ability to compute the maximum and minimum accelerations
attainable by the cooperating robot system, the control strategy established in Bobrow et al. 1985 can
be applied to achieve a time optimal movement. The essential idea is to always drive the system at its
maximum acceleration or deceleration. From this point of view, the problem reduces to the

computation of the points at which the shift from acceleration to deceleration and back again occur
along the path. To find these switching points, the acceleration equation,

= g(s, i), (25)

isintegratedforward intime from theinitialposition,and thedecelerationequation,

= f(s, _), (26)

is integrated backward in time from the final position to fred when they intersect in phase space.
This intersection determines+the value of s along the path at which the controller shifts from

acceleration to deceleration. In phase space the relation f(s, _) = g(s, _) defines a curve that

represents the maximum velocity attainable by the workpiece. It can happen that this maximum
velocity constraint is violated before the intersection of the solutions to (25) and (26) occurs.
Bobrow et al. 1985 show how to determine intermediate switching points when this occurs, so that

time optimal movement is maintained.

Conclusion

In this paper, the time optimal control problem is formulated for the case of two cooperating planar
3R robots. The control strategy is shown to be a generalization of the time optimal control of a single

robot arm. The problem of finding minimum time p.aths for the cooperating 3R arms is a similar
generalization of the problem of finding minimum tame trajectodes for single robot arms. Given the
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bility to me_ure transit, times for various paths between two desired positions of the workpiece held

_,_verai _.oots, a nonlm._ opla.mi3a., tion .routin e can vary the trajectory, while avoiding obstacles
comlgurauon space, unto me minimum ume path is found.
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